Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Trop ; 252: 107133, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38280638

RESUMO

Theileria annulata is the only eukaryotic pathogen able to transform bovine leukocytes, including B cells, macrophages and dendritic cells. T. annulata-transformed cells exhibit several cancer-like phenotypes, such as hyperproliferation, immortalization and dissemination. Although several parasite factors involved in bovine cell transformation have been explored, the roles of subtelomere-encoded variable secreted proteins (SVSPs) of the parasite in host-cell interactions are largely unknown. In the present study, the target molecule TA05560, a member of the SVSP multigene family of T. annulata, was identified at the mRNA level during different life cycles through a quantitative real-time PCR assay, and the subcellular distribution of TA05560 was examined via confocal microscopy. The results showed that the parasite molecule TA05560 was transcribed mainly in the schizont stage of T. annulata infection, and the protein was distributed in the nucleus and cytoplasm of the parasitized cells. The potential host cell proteins that interact with TA05560 were screened using the yeast two-hybrid system, and the direct interaction between TA05560 and its prey protein, Bos taurus RNA binding motif protein 39 (RBM39) was further identified in HEK293T cells by using confocal microscopy, coimmunoprecipitation and bimolecular fluorescence complementation assays. Moreover, the interaction between TA05560 and its host protein was observed in T. annulata-infected cells via confocal microscopy. Therefore, our study is the first to show that the T. annulata-secreted TA05560 protein directly binds to both the exogenous and endogenous host cell molecule RBM39, laying the foundation for exploring host-parasite interactions and understanding the transformation mechanisms induced by T. annulata and other transforming parasites.


Assuntos
Theileria annulata , Theileria , Theileriose , Bovinos , Animais , Humanos , Theileria annulata/genética , Células HEK293 , Proteínas/metabolismo , Linfócitos B , Motivos de Ligação ao RNA , Theileriose/parasitologia
2.
Parasit Vectors ; 15(1): 308, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042502

RESUMO

BACKGROUND: Theileria annulata, a transforming parasite, invades bovine B cells, dendritic cells and macrophages, promoting the uncontrolled proliferation of these cells. This protozoan evolved intricate strategies to subvert host cell signaling pathways related to antiapoptotic signaling to enable survival and proliferation within the host cells. However, the molecular mechanisms of the cell transformation induced by T. annulata remain largely unclear. Although some studies have predicted that the subtelomere-encoded variable secreted protein (SVSP) family plays roles in host-parasite interactions, the evidence for this is limited. METHODS: In the present study, the SVSP455 (TA05545) gene, a member of the SVSP gene family, was used as the target molecule. The expression pattern of SVSP455 in different life-cycle stages of T. annulata infection was explored using a quantitative real-time PCR assay, and the subcellular distribution of SVSP455 was observed using confocal microscopy. The host cell proteins interacting with SVSP455 were screened using the Y2H system, and their interactions were verified in vivo and in vitro using both bimolecular fluorescence complementation and confocal microscopy, and co-immunoprecipitation assays. The role played by SVSP455 in cell transformation was further explored by using overexpression, RNA interference and drug treatment experiments. RESULTS: The highest level of the SVSP455 transcript was detected in the schizont stage of T. annulata, and the protein was located both on the surface of schizonts and in the host cell cytoplasm. In addition, the interaction between SVSP455 and heat shock protein 60 was shown in vitro, and their link may regulate host cell apoptosis in T. annulata-infected cells. CONCLUSION: Our findings are the first to reveal that T. annulata-secreted SVSP455 molecule directly interacts with both exogenous and endogenous bovine HSP60 protein, and that the interaction of SVSP455-HSP60 may manipulate the host cell apoptosis signaling pathway. These results provide insights into cancer-like phenotypes underlying Theilera transformation and therapeutics for protection against other pathogens.


Assuntos
Theileria annulata , Theileria , Theileriose , Animais , Bovinos , Chaperonina 60 , Interações Hospedeiro-Parasita , Imunoprecipitação , Esquizontes , Theileria annulata/genética , Theileria annulata/metabolismo , Theileriose/prevenção & controle
3.
ACS Omega ; 6(49): 33883-33888, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34926935

RESUMO

Bi2Te3-based compounds are exclusive commercial thermoelectric materials around room temperature. For n-type compounds, optimal thermoelectric properties are normally obtained at temperatures higher than room temperature to suppress the bipolar effect through increased carrier concentration. We find that doping with trace amounts of Cd and the addition of excess Bi are effective ways to optimize carrier concentration and achieve enhanced room-temperature thermoelectric performance for the Bi2Te2.7Se0.3 alloy in this work. For the Cd-doped samples, the replacement of Cd with Bi leads to not only a significant decrease in electron concentration but also apparently reduces the total thermal conductivity. The addition of excess Bi in the samples creates a Bi-rich synthetic atmosphere during the synthesis process, leading to increased BiTe antisite defects, decreased electron concentration, and reduced total thermal conductivity. Doping a small amount of Cd or adding excess Bi causes optimal thermoelectric performance of the n-type Bi2Te2.7Se0.3 sample shifts obviously toward low temperatures, and the samples with 0.4 atom % Cd and 0.8 atom % excess Bi achieve maximum zT of ∼0.97 at 448 K and ∼0.88 at 348 K, respectively.

4.
Vet Parasitol ; 300: 109616, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34781076

RESUMO

Ovine babesiosis, caused by genus of Babesia, is a zoonotic disease and mainly transmitted by hard ticks. It has led to enormous economic losses to the sheep industry in China. In the present study, an ELISA assay for simultaneous detection six strains of Babesia spp., including B. motasi Lintan, B. motasi Tianzhu, B. motasi Hebei, B. motasi Ningxian, Babesia sp. Xinjiang and Babesia sp. Dunhuang, was developed using Apical Membrane Antigen 1 (AMA1) as candidate diagnostic antigen. The sensitivity and specificity of the established ELISA were 97.4 % and 98.0 %, respectively. Relatively high level of specific antibodies could be detected from 12th day to 126th day after sheep experimentally infected with Babesia spp.. A small scale of field sera was investigated using the developed ELISA assay, and the average positive rate was 51.98 %. This study provides an easy to operate, cost effective and time saving approach, which is suitable for both field and experimental samples, thus it could be a useful tool in epidemiological investigations and diagnoses of ovine babesiosis.


Assuntos
Babesia , Babesiose , Doenças dos Ovinos , Animais , Babesiose/diagnóstico , Babesiose/epidemiologia , China/epidemiologia , Ensaio de Imunoadsorção Enzimática/veterinária , Ovinos , Doenças dos Ovinos/diagnóstico , Doenças dos Ovinos/epidemiologia
5.
Parasit Vectors ; 14(1): 319, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34116718

RESUMO

BACKGROUND: Theileria annulata is a protozoan parasite that can infect and transform bovine B cells, macrophages, and dendritic cells. The mechanism of the transformation is still not well understood, and some parasite molecules have been identified, which contribute to cell proliferation by regulating host signaling pathways. Subtelomeric variable secreted proteins (SVSPs) of Theileria might affect the host cell phenotype, but its function is still not clear. Therefore, in the present study, we explored the interactions of SVSP454 with host cell proteins to investigate the molecular mechanism of T. annulata interaction with host cells. METHODS: The transcription level of an SVSP protein from T. annulata, SVSP454, was analyzed between different life stages and transformed cell passages using qRT-PCR. Then, SVSP454 was used as a bait to screen its interacting proteins from the bovine B cell cDNA library using a yeast two-hybrid (Y2H) system. The potential interacting proteins of host cells with SVSP454 were further identified by using a coimmunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC) assays. RESULTS: SVSP454 was transcribed in all three life stages of T. annulata but had the highest transcription during the schizont stage. However, the transcription level of SVSP454 continuously decreased as the cultures passaged. Two proteins, Bos Taurus coiled-coil domain 181 (CCDC181) and Bos Taurus mitochondrial ribosomal protein L30 (MRPL30), were screened. The proteins CCDC181 and MRPL30 of the host were further identified to directly interact with SVSP454. CONCLUSION: In the present study, SVSP454 was used as a bait plasmid, and its prey proteins CCDC181 and MRPL30 were screened out by using a Y2H system. Then, we demonstrated that SVSP454 directly interacted with both CCDC181 and MRPL30 by Co-IP and BiFC assays. Therefore, we speculate that SVSP454-CCDC181/SVSP454MRPL30 is an interacting axis that regulates the microtubule network and translation process of the host by some vital signaling molecules. Identification of the interaction of SVSP454 with CCDC181 and MRPL30 will help illustrate the transformation mechanisms induced by T. annulata.


Assuntos
Linfócitos B/parasitologia , Interações Hospedeiro-Parasita/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Theileria annulata/química , Theileria annulata/genética , Animais , Bovinos , Linhagem Celular , Proteínas dos Microtúbulos/metabolismo , Transporte Proteico , Transcrição Gênica
6.
Front Cell Infect Microbiol ; 11: 644983, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718289

RESUMO

Tropical theileriosis is the disease caused by tick-transmitted apicomplexan parasite Theileria annulata, which has ability to transform bovine leukocytes, including B cells, macrophage cells, and dendritic cells. The T. annulata transformed cells are characterized as uncontrolled proliferation and shared some cancer-like phenotypes. The mechanism of the transformation by T. annulata is still not understood well. In previous reports, the subtelomere-encoded variable secreted proteins (SVSP) of T. parva were considered to contribute to phenotypic changes of the host cell, but the role of SVSP of T. annulata in host-pathogen relationship remains unknown. In the present study, a member of SVSP family, TA05575 of T. annulata was selected as the target molecule to analyze its expression profiles in different life cycle stages of T. annulata by qPCR and investigate its subcellular distribution of different passages of T. annulata transformed cells using confocal experiments. From the results, the transcription level of TA05575 at schizont stage was significantly higher than the other two life stages of T. annulata, and the protein of TA05575 was mainly distributed in nucleus of T. annulata infected cells. In addition, the potential proteins of host cells interacting with TA05575 were screened by Yeast-two hybrid system. The results of Co-IP experiment confirmed that TA05575 interacted with RBMX2-like protein that participated in transcription regulation of cells. In addition, a novel BiFC assay and flow cytometry were carried out, and the results further revealed that TA05575-RBMX2-like pair was directly interacted in cell context. Moreover, this interacting pair was found to distribute in intracellular compartments of HEK293T cells by using confocal microscopy. The results of the present study suggest that TA05575 may contribute for cells transformation due its distribution. According to the function of RBMX2, the interaction of TA05575 and RMMX2-like will provide a new information to further understand the mechanisms of cells transformation by T. annulata.


Assuntos
Theileria annulata , Theileriose , Animais , Bovinos , Células HEK293 , Humanos , Leucócitos , Proteínas
7.
Pathogens ; 9(9)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899387

RESUMO

Theileriosis is an important tick-borne protozoosis that causes high morbidity and mortality in cattle. In this study, the pathological and clinical characteristics of cattle experimentally infected with Theileria annulata were investigated. The clinical findings revealed typical signs of bovine theileriosis, including fever, enlargement of superficial lymph nodes, anemia, and respiratory distress. The most common pathological features were petechial and ecchymotic hemorrhages on the mucosa and serosal surface, severe jaundice, pulmonary edema and emphysema, multifocal necrosis and numerous ulcerations in the abomasum, congestion and marble-like discoloration of the spleen, and severe intestinal ecchymotic hemorrhages. The main histological characteristics were proliferation and infiltration of lymphocytes, plasma cells, and macrophages in the lymph nodes, spleen, and lymph node mass. Macroschizonts were observed in the cytoplasm of lymphocytes and macrophages of the lymph nodes and spleen. This study has significance for basic research and the clinical detection and diagnosis of Theileria annulata infection and can aid the prevention and control of theileriosis and future studies of the pathogenic mechanisms.

8.
Research (Wash D C) ; 2020: 1736798, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32211611

RESUMO

Recent advances in high-throughput (HTP) computational power and machine learning have led to great achievements in exploration of new thermoelectric materials. However, experimental discovery and optimization of thermoelectric materials have long relied on the traditional Edisonian trial and error approach. Herein, we demonstrate that ultrahigh thermoelectric performance in a Cu-doped PbSe-PbS system can be realized by HTP experimental screening and precise property modulation. Combining the HTP experimental technique with transport model analysis, an optimal Se/S ratio showing high thermoelectric performance has been efficiently screened out. Subsequently, based on the screened Se/S ratio, the doping content of Cu has been subtly adjusted to reach the optimum carrier concentration. As a result, an outstanding peak zT~1.6 is achieved at 873 K for a 1.8 at% Cu-doped PbSe0.6S0.4 sample, which is the superior value among the n-type Te-free lead chalcogenides. We anticipate that current work will stimulate large-scale unitization of the HTP experimental technique in the thermoelectric field, which can greatly accelerate the research and development of new high-performance thermoelectric materials.

9.
Acta Trop ; 202: 105245, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31676457

RESUMO

Tropical theileriosis is a tick-borne lymphoproliferative disease of cattle caused by the apicomplexan parasite Theileria annulata, and leads to substantial economic losses to the livestock industry worldwide. Although various enzyme-linked immunosorbent assays (ELISAs) have been established to detect antibodies against T. annulata infection, a specific, rapid and reliable diagnostic assay is urgently needed for prevention and control of the disease. In the present study, a chemiluminescence immunoassay (CLIA) was developed based on the subtelomeric variable secreted protein (SVSP) of T. annulata as a sero-diagnostic antigen. Following optimization of the CLIA working parameters, the working time of the method was less than 4.5 h. The sensitivity and specificity of the established CLIA was 98.8% and 97.5%, respectively, when the cut-off value of the percent positive (PP) was 26.1% for detecting serum samples (n = 242 T. annulata positive sera, n = 158 T. annulata negative sera). After comparing 180 serum samples from Gansu province, China, the concordance rate between the CLIA and a published rSpm2 ELISA method was 72.8%. In addition, 565 serum samples of cattle collected between 2017 and 2018 from four provinces in China were detected by the CLIA, and the seroprevalence for T. annulata ranged from 53.3% to 67.3% in these regions. Our findings demonstrated that the CLIA has high specificity, sensitivity and reliability, and could be used as a rapid detection assay for epidemiological investigations of T. annulata infection.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Theileriose/diagnóstico , Theileriose/prevenção & controle , Animais , Bovinos , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/parasitologia , China/epidemiologia , Medições Luminescentes/métodos , Prevalência , Estudos Soroepidemiológicos , Theileria annulata , Theileriose/parasitologia , Doenças Transmitidas por Carrapatos/diagnóstico , Doenças Transmitidas por Carrapatos/parasitologia
10.
Acta Trop ; 202: 105237, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31669530

RESUMO

Theileria annulata schizont transformed bovine lymphocytes show the feature of permanent proliferation in vitro culture. In this study, we optimized a suitable culture medium for transformed cells to ensure a high yield of quality cells in suspension culture. As the basis for the optimized medium, we combined 75% Gibco (GB) and 25% RPMI-1640 medium. Glucose, lactic acid, ammonia, growth factors and several kinds of amino acids at specific concentrations play important roles in maintaining the maximum growth rate and the quality of cells. The metabolic flow of 17 amino acids, glucose and nutrients was determined with high-performance liquid chromatography (HPLC) and cell viability analysis. The genetic stability of the TaSP and TaSE genes at different passages of the cell line in suspension culture was determined using PCR amplification. The optimal concentrations or tolerated levels of glucose, lactic acid and ammonia were 10-14, 2-5.5 and 3.5-5.5 mmol/L, respectively. Our data demonstrated that the potential utility of the medium optimized here to yield high quality cells compared with basal (normally used) medium. The medium also facilitated the easy maintenance of transformed cells with high yields and excellent quality for in vitro studies. This study also provides insight into the processes of optimization and vaccine development.


Assuntos
Linfócitos/parasitologia , Theileria annulata/fisiologia , Aminoácidos/química , Aminoácidos/metabolismo , Amônia/química , Amônia/metabolismo , Animais , Bovinos , Linhagem Celular , Meios de Cultura/química , Glucose/química , Glucose/metabolismo , Testes Imunológicos , Ácido Láctico/química , Ácido Láctico/metabolismo , Linfócitos/fisiologia , Theileriose
11.
Parasit Vectors ; 12(1): 523, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694676

RESUMO

BACKGROUND: Bovine babesiosis is caused by protozoan parasites of the genus Babesia and presents a wide spectrum of clinical manifestations. Disease severity depends on the type of Babesia species infection. Generally, B. bovis and B. bigemina are considered as the causative agents of bovine babesiosis; in addition, Babesia ovata and B. major are a group of benign bovine piroplasms. Therefore, species identification is important for diagnosis, epidemiological investigations and follow-up management. METHODS: Real-time PCR combined with high resolution melting (RT-PCR-HRM) analysis was used to detect and discriminate four Babesia species infective to cattle, including Babesia bovis, B. bigemina, B. major and B. ovata. The melting profiles and melting temperatures (Tm) of the amplicon targeting 18S rRNA revealed differences that can discriminate the four Babesia spp. Sensitivity and specificity of the analytical method were evaluated using 50 blood samples collected from experimentally infected cattle and 240 blood samples from areas where bovine babesiosis is an issue. RESULTS: RT-PCR-HRM analysis allowed to detect and discriminate four Babesia spp. (B. bovis, B. bigemina, B. major and B. ovata), which were responsible for bovine babesiosis in China. The protocol was validated with DNA samples from experimentally infected cattle and field infection in cattle. CONCLUSIONS: Our results indicate that RT-PCR-HRM is a fast and robust tool for the simultaneous detection and discrimination of four Babesia species that are responsible for bovine babesiosis in China. This approach is applicable for both field and experimental samples, thus it could be useful in epidemiological investigations and diagnoses of bovine babesiosis.


Assuntos
Babesia/isolamento & purificação , Babesiose/diagnóstico , Doenças dos Bovinos/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , RNA Ribossômico 18S/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Temperatura de Transição , Animais , Babesia/genética , Bovinos , China , DNA Ribossômico/genética , Sensibilidade e Especificidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...